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Molecular Dynamics Calculation 
for the Modified xy  Model 
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In order to demonstrate the effectiveness of molecular dynamics (MD) for the 
determination of the density of states of a system that suffers an abrupt change 
of state, we have performed extensive calculations for the modified rotor model, 
defined by the interaction potential V(~p)=2J{1-[cos(~o/2)] p2} between 
neighboring rotors. Our results for 2-dimensional L x L lattices with L = 8, 16, 
32, and 64 demonstrate clearly that the transition is continuous for p2 ~< 24, but 
suggest a first-order transition for p2 ) 28. 

KEY WORDS:  Modified xy model; first order-transitions; molecular 
dynamics calculations. 

In  spite of the p r o n o u n c e d  s ignature  of a d i scon t inuous  phase  t rans i t ion  in 
the form of a la tent  heat,  it is ex t remely  difficult to dis t inguish a d iscon-  
t inuous  t rans i t ion  from a cont inuous  one on the basis of numer ica l  data .  (1) 

Because the d i sc r imina t ion  between con t inuous  and  d i scon t inuous  
t rans i t ions  is of pr ime impor t ance  not  only  in s tat is t ical  mechanics ,  but  
also in h igh-energy physics,  (2) a cons iderab le  effort is going into the deter-  
m ina t ion  of the densi ty  of states f2(e) by means  of the h i s togram M C  
method.(  3,41 

We have unde r t aken  extensive M D  calcula t ions  and it turned  out  that  
.t'2(e) [o r  equiva lent ly  the mic rocanon ica l ly  defined t empera tu re  T,~(e)] can 
be ex t rac ted  qui te  easily and with good  accuracy  from these data.  We  shall  
t ry to ex t r apo la t e  Tm(e ) to an infinite number  of particles.  F o r  the case 
s tudied below, Tm is not  a s ingle-valued funct ion of e (e = E / N  is the energy 
per  part icle) .  F igure  l a  shows examples  of the inverse funct ion ~(Tm), 
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Fig 1 (a) The microcanonical temperature T(e) as a function of the energy per particle for 
p2 = 32 and the four lattice sizes L = 8, 16, 32, and 64 ( N =  L • L )  Equation (3) has been used 
to derive T(e) from the entropy su(~) which is obtained from our MD calculations (b)The 
canonical mean value <e>T as a function of the bath temperature is calculated from the same 
expressions for the entropy using the partition function of Eq  (4)  (c) Data points of the 
present MD calculation for p 2 = 3 2  and L = 8  (x) ,  16 ([ ] ) ,  32 ( + ) ,  and 64 ( ~ )  Also shown 
are the best fi-ts of the mean kinetic energy as a l:unction of the total energy g 1]sing su(e ) 
from E q  (8)  
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whose S shape becomes less pronounced as N increases. The question is 
whether e(Tm) develops into a step (first-order transition) or something 
else for N ~ oo. 

As the object for our study we have chosen the modified xy model or 
planar rotor model on a 2-dimensional square lattice, defined by the 
Hamiltonian (5) 

where 

H = E =  y~ v(~,-~j)  (1) 
( i , j }  

V(rp) = 2J{1 - [cos(q)/2)] p2 } (2) 

The summation runs over nearest neighbor bonds with periodic boundary 
conditions. We put J = 1 and k B = 1; then all energies and temperatures are 
measured in units of J. 

This model, with an infinitely degenerate ground state, is interesting 
because of the absence of long-range order (6) for all temperatures T > 0  
despite the occurrence of a phase transition (y) at a finite T o. The transition 
separates the low-temperature phase with an algebraic decay of the correla- 
tions from the high-temperature phase where the correlations decay 
exponentially with distance. The most common form of V(cp) with p 2 =  1 
produces a continuous transition with rather unusual critical exponents. 

There has been a controversy about the order of the phase transition 
for larger values of p2. An early MC calculation (5) suggested that the 
transition is first order for p 2  = 50 and p2 = 100; another MC study (8) as 
well as the construction of the corresponding Villain model (9) propose 
that the transition is a first-order one for p 2 > 9 ;  whereas other MC 
calculations (*~ and Migdal-Kadanoff  (MK) renormalization (11) indicate 
that the transition is continuous even for p2=  50. In a more recent MK 
study (12) a discontinuity is found for p2>  50. 

In this paper we report on a molecular dynamics (MD) study of the 
modified xy model as defined by (1) and (2) for several values o f p  2 and 
four different lattice sizes. MD is very well suited for finding SN(e), the 
entropy per particle, of a system of N =  L • L rotors. Later we will extract 
SN(~) from our numerical data, but for the moment let us assume that the 
expressions for SN(e ) which will result from our MD calculations are exact. 
Let us anticipate these results and use them as a basis for a standard 
canonical analysis. 

From s~v(e) we find the microcanonical temperature T,~ = 1~tim using 
the definition 

~m(~) = dsN(~)/d~ (3) 
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Tm(e) is plotted in Fig. la for p2 ___= 32 and four lattice sizes as a function of 
e with the Tm and the e axes interchanged. The interest in the system lies 
in the S shape of the plot, which in the limit of infinite particle number may 
approach a finite step (discontinuous transition with latent heat), an 
infinite slope (second-order transition), or a finite slope (a transition with 
no singularity in the specific heat). 

Once Su(e ) is known, canonical averages are calculated from the 
partition function 

ZN(•) = f de exp{N[SN(e) -- fie] } (4) 

where T =  1/fl is the bath temperature. From Eq. (4) we calculate ( e ) r =  
- N  -1 dlnZN/dfl and CN(T)=d(e)r/dT, the specific heat per particle. 
The mean energy ( e ) r  is shown as a function of T in Fig. lb. The large 
value of the slope for 2.1 < T < 2.2 gives rise to a peak of the specific heat 
CN(T) per particle whose maximum value increases sharply with N. In a 
conventional MC calculation, ( e ) r  or CN(T) is calculated directly. As 
SN(e) depends only little on N (see Fig. la), the sharp increase of CN(T) is 
almost entirely due to the factor N which multiplies Su(e ) in the exponent 
of (4). This strong N dependence has to be sorted out from the weak one 
of SN(e), which in the end determines if the transition is continuous or 
discontinuous. 

For the purpose of a MD calculation we have to introduce a dynamics 
for the system. This is very naturally achieved by adding a kinetic energy 
term to the Hamiltonian (1): 

G=~12/2+ Z V(~o~-q~j) (5) 
i ( i , j )  

where li is the angular momentum conjugate to the angle ~oi and the 
moment of inertia is unity. The dynamical equations obeyed by the system 
are Hamilton's equations following from (5), 

(o, = OG/~l, and ]~ = -OG/&pg (6) 

The total energy G = K + E  (kinetic+potential) is a constant of the 
motion; thus the system moves on a constant-energy surface. For low tem- 
peratures the system behaves like a harmonic solid with Hamilton's equa- 
tions being nearly linear. For high temperatures the system approaches the 
limit of free rotors with linear equations of motion once again. Around the 
phase transition temperature the dynamics is governed by the strongly 
anharmonic part of the potential. The equations of motion are highly non- 
linear. The point representing the system in phase space moves in an essen- 
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tially chaotic way over the constant-energy surface and it may therefore 
rightfully be assumed that time averages provide very good approximations 
to ensemble averages. 

We have implemented the equations of motion (6) on the distributed 
array processor ICL-DAP2 of the Institute for Mathematical Machines 
and Data Processing at the University of Erlangen. The problem is very 
well adapted to this type of parallel computer, with 1024 processors 
arranged in a quadratic 32 x 32 grid with nearest neighbor interactions and 
periodic boundary conditions implemented. The equations of motion have 
been integrated using an algorithm correct in three orders of the time step. 

Constant-energy simulations were performed over 200,000 time steps 
of a duration At between 0.015 and 0.040 (depending on the kinetic 
energy). The first one in a series of runs was started with all rotors pointing 
in one direction (all (Pi = 0), i.e., e = 0. The momenta were chosen randomly 
with a Gaussian distribution of zero mean and a width such that the 
energy per particle was g = 0.4. The second and all subsequent runs were 
started in the configuration of the angles taken from the last time step of 
the previous run with a new Gaussian velocity distribution such that the 
total energy was at the desired level. In this manner the energy was discon- 
tinuously increased to values well beyond the phase transition. The first 
80,000 time steps were discarded to allow for equilibration, then time 
averages were performed with samplings every 5 time steps. 

During the runs at constant total energy (G = Ng) the kinetic energy 
k per particle has been monitored and (time) averages (k)g have been 
formed. The data points of ( e ) g =  g - ( k ) ~  falling into the window of 
Fig. lc are plotted there against 2 ( k ) g  for pZ=32  and N = 6 4 ,  256, 
1024, and 4096. On the other hand, knowing the density of states Oh(k ) oc 
k(U 2)/2 in momentum space, we may generate (k)g from SN(e): 

(k)g=f  de (g--e)N/2exp{USN(e)}/f de (g--~)(N--21/2exp{XSN(e)} (7) 

We have used the following expression for the unknown entropy: 

SN(e ) : A l ( e  - -  A 3 )  71- Az(e - A3) 2 + A4(e - A3) 4 

-Asexp{(e-A6)/Av}-A8exp{-(e-Ag)/A~o } (8) 

with ten adjustable parameters Ai, for a least squares fit of ( k ) g  as a 
function of g. The lines in Fig. lc show the results of such a procedure for 
p2=  32. The plots in Figs. la and lb were generated from the functions 
Su(e) as obtained from these fits. 

In the thermodynamic limit, Figs. la -c  become identical, but it is 

822/66/5-6-31 
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Fig. 2. Plot of A(e) as defined in Fig. la for several values o fp  2 and four lattice sizes. Clearly, 
the data do not extrapolate to a finite jump for p2 < 24, but it is our opinion that they do for 
p2 >~ 28. 

evident that e(Tm) and ( e )g  approach each other much faster than e(Tm) 
and ( e ) r  (which suffers from a trivial N dependence). Consequently, a 
MD calculation provides a much better access to the density of states than 
a canonical approach. Even in a histogram MC calculation it is difficult to 
obtain good statistics for the region of low density of states between the 
maxima of probability density. This is not the case in MD, where the 
(constant) energy can be chosen right in the middle of the step between 
low- and high-temperature phase. 

The step height Ae [halfway between the extrema of Tm(~ ) as indicated 
by the arrow in Fig. la for N =  64-1 has been carried over into Fig. 2 for 
p2=  20, 22, 24, 28, and 32 and the four lattice sizes. It is clearly seen that 
for p2< 24 there remains no step in e(Tm) as N ~  oo. We believe that the 
data extrapolate to a finite step for p2>  28. It is, however, true that an 
extrapolation of numerical data to infinite lattice size cannot substitute for 
a mathematical proof. The data in Fig. 2 seem to be of adequate accuracy, 
but calculations for larger lattice sizes would be desirable in order to make 
the extrapolation more convincing. 
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